Bipartite Correlation Clustering: Maximizing Agreements

نویسندگان

  • Megasthenis Asteris
  • Anastasios Kyrillidis
  • Dimitris S. Papailiopoulos
  • Alexandros G. Dimakis
چکیده

In Bipartite Correlation Clustering (BCC) we are given a complete bipartite graph G with ‘+’ and ‘−’ edges, and we seek a vertex clustering that maximizes the number of agreements: the number of all ‘+’ edges within clusters plus all ‘−’ edges cut across clusters. BCC is known to be NP-hard [5]. We present a novel approximation algorithm for k-BCC, a variant of BCC with an upper bound k on the number of clusters. Our algorithm outputs a k-clustering that provably achieves a number of agreements within a multiplicative (1− δ)-factor from the optimal, for any desired accuracy δ. It relies on solving a combinatorially constrained bilinear maximization on the bi-adjacency matrix of G. It runs in time exponential in k and 1/δ, but linear in the size of the input. Further, we show that in the (unconstrained) BCC setting, an (1− δ)-approximation can be achieved by O(δ−1) clusters regardless of the size of the graph. In turn, our k-BCC algorithm implies an Efficient PTAS for the BCC objective of maximizing agreements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey topic: Parallel Clustering Algorithms Annotated Bibliography of the literature found

** This thesis studies graph clustering on bipartite and chordal graphs. It describes two types of clustering problems: a partition of the vertex of a graph with minimum diameters of subgraphs; maximizing possible number of edges given fixed number of vertices.

متن کامل

Improved Approximation Algorithms for Bipartite Correlation Clustering

In this work we study the problem of Bipartite Correlation Clustering (BCC), a natural bipartite counterpart of the well studied Correlation Clustering (CC) problem. Given a bipartite graph, the objective of BCC is to generate a set of vertex-disjoint bi-cliques (clusters) which minimizes the symmetric difference to it. The best known approximation algorithm for BCC due to Amit (2004) guarantee...

متن کامل

Local Guarantees in Graph Cuts and Clustering

Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min s − t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled + or − and the goal is to produce a clustering that agrees with the labels as much as possible: + edges within clusters and − edges across clusters. The classica...

متن کامل

An Improved Algorithm for Bipartite Correlation Clustering

Bipartite Correlation clustering is the problem of generating a set of disjoint bi-cliques on a set of nodes while minimizing the symmetric difference to a bipartite input graph. The number or size of the output clusters is not constrained in any way. The best known approximation algorithm for this problem gives a factor of 11. This result and all previous ones involve solving large linear or s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016